

Manuel Calderon, TU, Trigger Workshop LBL, May 2002

- this talk was originally meant for a round the table discussion
- not a plenary talk but "work in progress"
- discussion during this meeting \Rightarrow input for further studies

Introduction

Goal: develop and test L2 algorithm for triggering on Quarkonia in STAR, i.e. for triggering on mass

Assumptions:

- ◆ Input into L2: EMC, BBC, ZDC
- Input data are pedestal subtracted and gain corrected

Requirements:

- Fast (< 1 ms) and robust (not fancy) algorithm
- Evaluate invariant mass of candidates on event

Approach:

• Simple (Mickey Mouse MC) simulation for proof of principle before more elaborate and detailed studies

Open Questions:

- EMC granularity (tower or trigger patch 4×4) \Rightarrow study both
- EMC Energy resolution \Rightarrow study for 17%/ \sqrt{E} to 50 %/ \sqrt{E}
- Vertex-z resolution (BBC/ZDC/both) \Rightarrow study 1, 5, and 10 cm

Simulations: Input Distributions

Simple parametrization from ALICE tuned for 200 GeV at RHIC:

$$\frac{d\mathbf{s}}{dp_{T}} = \frac{p_{T}}{[1 + (p_{T}/p_{0})^{2}]^{3.5}}$$

$$\frac{d\mathbf{s}}{dy} = \begin{cases} 1 & \text{for } y < y_{0} \\ \exp[-(y - y_{0})^{2}/2] & \text{for } y > y_{0} \end{cases}$$

$$J/\Psi: \quad p_{0} = 2.3, y_{0} = 1.0$$

$$Y: \quad p_{0} = 4.7, y_{0} = 0.5$$

Very close to predictions from D. Kharzeevs

Simulation: Strategy

Generation

- Generate $J/\Psi(\Upsilon) \Rightarrow p_T$ and y
- Decay into $e^+e^- \Rightarrow p^e_T$ and y^e
- \bullet Assume vertex (0,0,0)
- Generate helices for electron and positron for full field
- Check for intersection with full (half) EMC barrel

Smearing

- Smear vertex according to BBC/ZDC vertex resolution
- Smear position of intersection with EMC
- Smear energy (since E/p = 1 is assumed \Rightarrow smeared p)

Reconstruction

• Given $(x,y,z)_{vertex}$, two $(x,y,z)_{point-EMC}$ and $p_1, p_2 \Rightarrow mass$

Simulations: Smearing

If info on individual towers available \Rightarrow assume pos = tower center If only patch is known (4×4 towers) \Rightarrow assume pos = patch center Resolution: $\sigma_E/E = (17\% - 50\%)/\sqrt{E}$?

Vertex: ZDC for central events $\Delta z \approx 10$ cm, for min bias 6 cm

BBC with improvements 5 cm?

Combine ZDC+BBC?

Region of interactions

Reconstruction: Approach I (e⁺ e⁻ ambiguity)

Electron track:

- $p = (E_{EMC}^2 m^2)^{1/2} \approx E_{EMC}$
- $\tan \lambda \approx p_z/p_T$ (approximation only : sagitta \Leftrightarrow pathlength)
- $p_T = p/(1 + \tan^2 \lambda)^{1/2}$
- $p_z = p_T \tan \lambda$
- $R = p_T/(B c)$
- $R \Rightarrow (x,y)_c$ ambiguous!
- phase $\phi_0 = \operatorname{atan}((y_0 y_c)/(x_0 x_c))$
- Azimuthal angle $\Psi = \phi_0 + h \pi/2$ (h = helicity)
- Finally: $\Psi \Rightarrow p_x$ and p_y
- Same for other track \Rightarrow invariant mass

 $(x,y)_c$

Reconstruction: Approach I (continued)

Reconstruction: Approach II (quick, dirty and good)

- $p_1 = (E_{EMC-1}^2 m^2)^{1/2} \approx E_{EMC}$
- $p_2 = (E_{EMC-2}^2 m^2)^{1/2} \approx E_{EMC}$
- $\cos \theta = x1 \cdot x2/(|x1| |x2|)$
- $m^2 \approx 2 p_1 p_2 (1 \cos \theta)$

Pro:

- simple, fast (no trig function)
- avoids ambiguity

Comparison: Approach I vs. II

Example for Υ with smearing (tower, 34%, 10cm)
blue = approach II (quick and dirty)
red = approach I (elaborate)

Simpler approach sufficient for more realistic cases

Same is true for J/Ψ

L2 Algorithm: resolution for J/Ψ

	Exact	Tower	Patch (4×4)
$sigma_z = 0$	142	145	175
$\sigma_{\rm EMC} = 0\%$	249	257	384
sigma_z = 1 cm	288	289	304
$\sigma_{\rm EMC} = 17\%$	315	324	433
sigma_z = 5 cm	289	290	304
$\sigma_{\rm EMC} = 17\%$	316	325	433
sigma_z = 10 cm	292	293	307
$\sigma_{\rm EMC} = 17\%$	321	328	435
sigma_z = 1 cm	476	477	486
$\sigma_{\rm EMC} = 34\%$	522	528	605
sigma_z = 5 cm	477	478	486
$\sigma_{\rm EMC} = 34\%$	521	527	604
sigma_z = 10 cm	479	480	488
$\sigma_{\rm EMC} = 34\%$	523	529	604
$sigma_z = 15 cm$	644	645	651
$\sigma_{\rm EMC} = 50\%$	819	823	867

 $P_e > 1.5 \text{ GeV/c}$ $P_e > 3 \text{ GeV/c}$

All values in MeV, σ_{EMC} means $\sigma_{E}/E = \sigma_{EMC}/\sqrt{E}$, Gaussian smearing

L2 Algorithm: resolution for Υ

	Exact	Tower	Patch (4×4)
$sigma_z = 0$ $\sigma_{EMC} = 0\%$	87	98	203
$sigma_z = 1 cm$ $\sigma_{EMC} = 17\%$	504	506	534
$sigma_z = 5 cm$ $\sigma_{EMC} = 17\%$	508	510	538
$sigma_z = 10 \text{ cm}$ $\sigma_{EMC} = 17\%$	520	522	550
$sigma_z = 1 cm$ $\sigma_{EMC} = 34\%$	965	966	980
$sigma_z = 5 cm$ $\sigma_{EMC} = 34\%$	967	968	982
$sigma_z = 10 \text{ cm}$ $\sigma_{EMC} = 34\%$	973	974	987
$sigma_z = 15 \text{ cm}$ $\sigma_{EMC} = 50\%$	1355	1356	1365

All values in MeV, σ_{EMC} means $\sigma_{E}/E = \sigma_{EMC}/\sqrt{E}$, Gaussian smearing, $p_{e}>3$ GeV/c

What goes into L2: Rates for J/Ψ

Assume:

- Nominal Liminosity: $L = 0.2 \text{ mb}^{-1} \text{ s}^{-1} \ (= 2 \cdot 10^6 \text{ cm}^{-2} \text{ s}^{-1})$
- EMC/L2 rate = 1kHz

J/Ψ:

- $\sigma^{AA} = A^{2\alpha} \sigma^{pp} = 10.7 \text{ mb}$ for $\Delta y=1$ and $\alpha = 0.92$
- Rate: $10.7 \text{ mb} \cdot 0.2 \text{ mb}^{-1} \text{ s}^{-1} \cdot \text{BR}(0.06) = 0.13 \text{ Hz}$
- for $\Delta y \rightarrow$ full phasespace: 4.5
- Both in acceptance of EMC: \rightarrow see Table 1
- Min Bias:
 - $7200 \text{ mb} \cdot 0.2 \text{ mb}^{-1} \text{ s}^{-1} = 1440 \text{ Hz}$
 - sampling: 1000/1440 = 0.7 (deadtime?)
 - L2 rate: $0.13 \text{ Hz} \cdot 0.7 \cdot 4.5 \cdot \varepsilon \rightarrow \text{see Table 2}$
- 10% Central
 - \bullet 720 mb · 0.2 mb⁻¹ s⁻¹ = 144 Hz
 - sampling = $1 \rightarrow \text{no loss}$
 - L2 rate: $0.13 \text{ Hz} \cdot 0.4 \cdot 4.5 \cdot \varepsilon \rightarrow \text{see Table 2}$

(red) for half EMC

p _e cut [MeV]	acceptance ε [%]	
0	19.8 (5.4)	
1.5	7.5 (1.5)	
2	1.4 (0.5)	
3	0.1 (0.05)	

Table 1.

p _e cut [MeV]	min bias [Hz]	10% central [Hz]
0	8.2 · 10-2	4.7 · 10-2
1.5	3.1 · 10-2	1.8 · 10-2
2	6 · 10 ⁻³	$3 \cdot 10^{-3}$
3	4 · 10-4	2 · 10-4

Table 2.

What goes into L2: Rates for Υ

Assume:

- Nominal Liminosity: $L = 0.2 \text{ mb}^{-1} \text{ s}^{-1} \ (= 2 \cdot 10^6 \text{ cm}^{-2} \text{ s}^{-1})$
- EMC/L2 rate = 1kHz

<u>Y:</u>

- $\sigma^{AA} = A^{2\alpha} \cdot \sigma^{pp} \cdot BR = 1.7 \,\mu b$ for $\Delta y = 1$ and $\alpha = 0.92$
- Rate: $1.7 \, \mu b \cdot 0.2 \, mb^{-1} \, s^{-1} = 3.4 \cdot 10^{-4} \, Hz$
- for $\Delta y \rightarrow$ full phasespace: 3.5
- Both in acceptance of EMC: \rightarrow see table 1
- Min Bias:
 - $7200 \text{ mb} \cdot 0.2 \text{ mb}^{-1} \text{ s}^{-1} = 1440 \text{ Hz}$
 - sampling: 1000/1440 = 0.7
 - L2 rate: $3.4 \cdot 10^{-4} \text{ Hz} \cdot 0.7 \cdot 3.5 \cdot \varepsilon \rightarrow \text{see table 2}$
- 10% Central
 - $720 \text{ mb} \cdot 0.2 \text{ mb}^{-1} \text{ s}^{-1} = 144 \text{ Hz}$
 - sampling = $1 \rightarrow \text{no loss}$
 - L2 rate: $3.4 \cdot 10^{-4} \text{ Hz} \cdot 0.4 \cdot 3.5 \cdot \varepsilon \rightarrow \text{see table 2}$

(red) for half EMC

p _e cut [MeV]	acceptance ε [%]
0	24.9 (6.9)
1.5	24.8 (6.8)
2	24.7 (6.8)
3	23.3 (6.6)

Table 1.

p _e cut [MeV]	min bias [Hz]	10% central [Hz]
0	2.1 · 10-4	1.2·10-4
1.5	2.1 · 10-4	1.2·10-4
2	2.1 · 10-4	1.2·10-4
3	1.9 · 10 - 4	1.1.10-4

Table 2.

No Background Simulations (yet)

Needs realistic simulations:

Mickey-Mouse MC not the right tool – need full simulation Look at background using 2001 data (see T. Dietel)

On the positive side:

Energy scale moves up by p/E

But ...

- occupancy, pile-up, noise
- photons, other physics background

Q:

• what can be done at **L2 level** to reject single hadrons (assume all tower data available?)

For L3: L2 needs to achieve a rate reduction factor of

- 10 (min bias)
- 3 (central)

If this can be achieved with a reasonable threshold depends solely on the background

Summary & ToDo List

Simple algorithm sufficient to derive invariant mass J/Ψ and Υ

- crucial: energy resolution
- less crucial: vertex-z position and granularity
 - however granularity ⇔ energy resolution
- To get a reasonable J/Ψ sample we cannot cut much higher than 1.5 GeV
 - downside drives background up, worse E resolution
- Half EMC cost between 3-5 loss in rate (p cut dependent)
- Y not possible with half EMC and current RHIC performance
 - 3 GeV cut gets them (almost) all
 - algorithm: different E cuts for different mass regions possible but probably not necessary (clean around m=9 GeV ?)

Todo:

- ◆ Geant + L2 simulations (EMC response)
 - realistic constraints (tower, patch, ...)

Q:

- Assume it works: what bandwidth is STAR willing to allocate for hard probes and Quarkonia?
 - last years few % won't work

